CLIMATE CHANGE INFORMED SPECIES SELECTION

&

Some implications for reforestation

Will MacKenzie R.P.Bio, Provincial Research Ecologist, FLNROD ITAC, January, 2021

BEC | The Biogeoclimatic Ecosystem Classification of British Columbia

TALK OUTLINE

- I. The climate change-informed species selection (CCISS) and webtool
- 2. Some provincial level implications to species suitability and ranges
- 3. Status and on-going work

GOAL: FUTURE FORESTS CONTINUE TO PROVIDE DESIRED GOODS AND SERVICES

- Plant tree species that are adapted to both current and future conditions
- Then select best climate adapted populations (CBST)

A CLIMATE CHANGE-INFORMED SPECIES SELECTION (CCISS) ANALYSIS

- MODELS THE TRAJECTORY OF TREE SPECIES SUITABILITY THROUGH CLIMATE CHANGE PERIODS
- Identifies species adapted to site conditions now <u>and into the future</u>

APPLYING **BEC** TO SELECT ECOLOGICALLY APPROPRIATE TREE SPECIES

BEC | The Biogeoclimatic Ecosystem Classification of British Columbia

MODELLING BIOCLIMATE REDISTRIBUTION WITH MACHINE LEARNING AND CLIMATE SURFACE DATA

PREDICT TREE FEASIBILITY IN 30 MODEL-SCENARIOS OF CLIMATE CHANGE IN 20-YEAR PERIODS TO 2100

CCISS FROM CLIMATE MODELLING TO SITE-LEVEL IMPLICATIONS

Aligning site series that occupy the same relative positions in the landscape

 Feasibility change is affected by edatopic position

CCISS WEB APP

$\blacksquare \ \leftarrow \ \rightarrow \ \bigcirc \ \bigcirc$

这 ○ A https://thebeczone.ca/shiny/ccissdev/

APP INFO 🗸

- New web app hosted on independent cloud servers and programming maintained by CCISS researchers
- Consolidates climate change implications to species feasibility for sites series at user specified geographic locations
- Displays 5 reporting tabs
 - I. User selection of sites/area of interest
 - 2. Modelled feasibility changes by sites series, estimated feasibility rating for establishment and through rotation based on trend model agreement
 - 3. Alignment of CCISS to CFRG default stocking and silvics info from Klinka et al
 - 4. Draft portfolio analysis
- Export CCISS report to HTML or PDF

I. CHOOSE SITES OR AREAS OF INTEREST

- Choose specific location(s), or
 - A single BGC or
 - BGC x District
- Report by indiv site or averaged
- Change default model settings

2. FEASIBILITY TRENDS BY SITE SERIES

BRITISH THE CCISS Tool³ SELECT SITES[®] FEASIBILITY REPORT[®] BEC FUTURES *[®] SILVICS & ECOLOGY[®] SPECIES PORTFOLIO^{D/2010} B[®] APP INFO *

3 Section Instructions			Raw Votes	CFRG			CCISS			Trend
Filters Sites:	Tree Species	Period	Modelled Feasibility	Suitability	P/A	Environmental	Establishment	Future (cciss)	P/A (cciss)	Improve/Same Decline/Unsuitable
IDFdk3 Site Series IDFdk3/01 FdPI - Pinegrass - Feathermoss	Fd: Douglas-fir	Historic Current 2021-2040 2041-2060 2061-2080 2081-2100	100% 27% 51% 13% 9% 38% 66% 49% 49% 50% 66% 66% 34% 24%	1	Р	E2	E2	E2	Ρ	<u>97</u> 3
Feasibility All Feasible Only Legend Primary	At: trembling aspen	Historic Current 2021-2040 2041-2060 2061-2080 2081-2100	100% 43% 22% 32% 24% 32% 21% 23% 9% 56% 31% 52% 40% 48% 45%	0	x	E1	E2	E3	x	<u>11</u> 89
 Secondary Tertiary Not Suitable Edatopic Position 	PI: lodgepole pine	Historic Current 2021-2040 2041-2060 2061-2080 2081-2100	100% 49% 21% 30% 35% 19% 46% 32% 29% 39% 22% 33% 42% 16% 31% 7% 46%	1	Р	E1	E2	E3	A	<u>26</u> 74
0- 1- 2-	Sx: interior spruce	Historic Current 2021-2040 2041-2060 2061-2080 2081-2100	100% 11% 31% 51% 20% 24% 55% 31% 20% 47% 22% 16% 60% 16% 67% 67%	3	A	E3	x	x	x	<u>43</u> 57

3. BEC FUTURES

- Ratio of BGCs and Site Series predicted
- Map of source BGCs for future climate periods.

BRITISH COLUMBIA	SELECT SITES? F	EASIBILITY REPORT	BEC FUTU	Res 📲 Silvic	S & ECOLO)GY? SPECI	ES PORTFOLIO ^{Draft} ?		
Section Instructions	Chief Forester Reference Guide		Tolerance	Resistance	Regener	ration stage	Maturing stage		
Filters	Forest Region: LMH3 Regeneration	Stocking (i) - well spaced/ha							
Sites:	Feasibility	CFRG	cciss	Target Min	pa Min p	Regen Delay	(max yrs)		
IDFdk3	Primary/E1	Fd ^{27,28} , Pl ²⁸		1000 500	400	7			
Site Series	Secondary/E2 Tertiary/E3		Fd Py Py	Free Growing Guide					
	Trial			Earliest (yrs) Latest(yrs) Min Height (m) Min Height (m)					
IDruks/04 ru - bluebulicii Wilealgiass - Needlegiass	Broadleaf	At ⁹⁰¹		12	15	Fd: 0.8, Pl: 1			
Tree Species	Acceptable (a)	F027,20, 2 420	Fa Py						
Feasible Species 🔹	Footnotes								
Legend Improving Decreasing Adding	²⁷ partial canopy cover i ²⁸ limited by moisture d	required for establishm eficit	ent						

4. CCISS ALIGNMENT TO DEFAULT STANDARDS

SOME PROVINCIAL TRENDS IN SPECIES FEASIBILITY

- From Forest Ecology and Management paper
- Provincial level spatial trends in environmental suitability species under different edaphic conditions

PERSISTENCE AND EXPANDING FEASIBLE RANGE

- Temperate and rain forest species persist and expand
- Boreal and subalpine species decline

USA AND ALBERTA CLIMATES IN BC FUTURE BUT FEW SPECIES ADDITIONS

Alberta climates into the Peace

USA climates at low elevation southern coast and interior but few new species

Mean change in feasibility rating

PROJECTED FUTURE DOUGLAS-FIR FEASIBILITY ON ZONAL SITES

Mean change in feasibility rating

PROJECTED FUTURE PONDEROSA PINE FEASIBILITY ON ZONAL SITES

Mean change in feasibility rating

PROJECTED FUTURE WESTERN LARCH FEASIBILITY ON ZONAL SITES CHALLENGES WITH CURRENT JAQUISH IMPLEMENTATION

Mean change in feasibility rating

PROJECTED FUTURE PONDEROSA PINE FEASIBILITY ON ZONAL SITES

Site Type: C4 TimePeriod: 2061

lodgepole pine (PI)

Expansion or Retreat (model agreement)

Mean change in feasibility rating

PROJECTED FUTURE LODGEPOLE PINE FEASIBILITY ON ZONAL SITES

Mean change in feasibility rating

PROJECTED FUTURE INTERIOR SPRUCE FEASIBILITY ON ZONAL SITES

interior spruce (Sx) Site Type: D6 TimePeriod: 2061-2080 to chara

Expansion or Retreat (model agreement)

Mean change in feasibility rating

PROJECTED FUTURE INTERIOR SPRUCE FEASIBILITY ON RICH HYGRIC SITES

CURRENT STATUS OF CCISS

I.Working towards executive approval

Some technical components to finalize

FN and Client consult - Limited staff for this work

2. Comprehensive comparison of CCISS with CFRG default standards by forest district

Avenue for review (and implementation) by Regions/Districts

Compare Default Standards with CCISS by District

Site Series: IDFdk3/04

ounotes

27 partial canopy cover required for establishment

²⁸ limited by moisture deficit

Site Series: IDFdk3/05

Forest Region: LMH39-Cariboo

Standards ID: 80098									
Regeneration	Stocking (i) - well spaced/ha								
Feasibility	CFRG	CCISS	Target	Min pa	Min p	Regen Delay			
Primary/E1	Fd ²⁷ , Pl		1200	700	600	7			
Secondary/E2		Fd							
Tertiary/E3		PI, Py	Free Growing Guide						
Trial	1756			Earliest (vrs)Latest(vrs)Min Height (m					
Broadleaf	At ⁹⁰¹		12	15	and fro	Ed: 1 Pl: 1.4			
Preferred (p)	Fd27, PI	Fd				1 40 111 1 111			
Acceptable (a)		PI.Py							
Footnotes		04.000005							

27 partial canopy cover required for establishment

ADDITIONAL ONGOING WORK

Assessment of existing off-site trials to support planting of CCadapted species <u>now</u> Forest health risk ratings by host:pest for each BGC for CCISS analysis and update CFRG Modern Portfolio Analysis: Stand and Landscape Diversification to manage risk

REVIEW OF EXISTING OFF-SITE TRIALS TO SUPPORT RANGE EXPANSION

SAMPLED NATURAL LARCH STANDS (GREEN) AND EXPANDED JAQUISH RANGE (GREY)

EXISTING OFF-SITE LARCH PLANTINGS FOR POTENTIAL ASSESSMENT

FOREST HEALTH RISK BY BEC

- I. CCISS forecasting of changes to forest health risk with climate change
- 2. For consideration suitability ratings for climate change stocking standards

ADDRESSING CLIMATE CHANGE UNCERTAINTY MODERN PORTFOLIO THEORY

IMPLICATIONS OF CCISS FOR SEEDLING REQUIREMENTS

- CCISS stocking standards may lead to increased planting of temperate and rainforest species; decline in boreal species
- Range expansion of new species from USA/AB into BC appears to be limited (but more for important for CBST)
- Operational implementation of range expansion for off-site species should be supported by trial data and this might take some time
- With changing climate there are likely to be more unexpected weather-mediated events with plantation losses that will need for replant/fill plant
- Species diversification in reforestation could lead to more balanced demand
- New non timber standards may lead to demand for previously ignored species (e.g. trembling aspen)

