FGC MALL Forest Genetics Council of British Columbia

ITAC Extension Meeting – January 22 & 23, 2020

Population variation for adaptation traits in Douglas-fir

Rafael Candido Ribeiro

PhD student in Forestry – Sally Aitken Lab (UBC)

Introduction

- Climate Change

Introduction

Local adaptation mainly driven by cold temperatures

- Local adaptation

Drought is likely becoming one of the major drivers of adaptation

Introduction

- Douglas-fir (*Pseudotsuga menziesii*)

Interior range (var. glauca)

Objectives

- Investigate the evolutionary potential of Douglas-fir to adapt to climate change
- Characterize levels of cold and drought hardiness in natural and breeding populations (seedlings)
- Describe the distribution of phenotypes and genotypes underlying these adaptations throughout the species' range
- In this sense, can we precisely prescribe assisted gene flow strategies that will better match genotypes with predicted future climates?

Methods Sampling

- 87 provenances:
- 45 *Pseudotsuga menziesii* var. *menziesii* (8 from orchards)
- 42 Pseudotsuga menziesii var. glauca (6 from orchards)

• 1 experiment

Cold-hardiness

Cold-hardiness Totem Field (UBC – Vancouver)

- 87 seedlots: 73 natural + 14 sel.
- 11 blocks
- 2,640 seedlings

Cold hardiness - Phenotyping

- Growth: height
- Phenology
- Fall cold injury: artificial freeze testing with electrical conductivity meters
- Shoot biomass

Cold injury testing

Electrolyte leakage

Healthy Trees for Future Climates

Cold injury: all populations

Exp	erin	nent	

Source of Variance	Cold Injury	
Variety	87%	
Provenance	4%	
Block	0%	
Residual	8%	
Vpop (populations)	33%	
Vpop (Varieties)	91%	

Combined temperatures

Cold injury: all populations

Exp	erim	lent	

Source of Variance	Cold Injury
Variety	87%
Provenance	4%
Block	0%
Residual	8%
Vpop (populations)	33%
Vpop (Varieties)	91%

Combined temperatures

Cold injury: all populations

Source of Variance	Cold Injury	60100
Provenance	29%	2.8
Block	1%	
Residual	70%	
Vpop	29%	
		45'000
Fdi Source of Variance	Cold Injury	100,07
Fdi Source of Variance Provenance	Cold Injury 36%	MULTIN THE PARTY NAME
Fdi Source of Variance Provenance Block	Cold Injury 36% 4%	4010016
Fdi Source of Variance Provenance Block Residual	Cold Injury 36% 4% 60%	MUSICIAN MUSICIAN

Clear differences between varieties

Clear differentiation among populations

Drought hardiness

Greenhouse (Department of Botany – UBC)

- 87 seedlots: 73 natural + 14 sel.
- 4-18 seedlings from each provenance
- 1,440 seedlings

Drought treatment (Dry)
Control (Wet)

Methods

Chlorophyll fluorescence (Fv/Fm) measurements

- Dark adapted

Experiment over time

Drought hardiness Analysis (Fv/Fm)

- Spatial autocorrelation correction (ASRemI-R)
- Fv/Fm_(corrected) = Fv/Fm spatial effect

Drought hardiness Analysis (Fv/Fm)

 Corrected Fv/Fm slopes as a proxy for drought-hardiness (simple linear regression)

Clear differences between varieties

CoAdapTree

Healthy Trees for Future Climates

Distribution of drought-hardiness variation (varieties together)

Experiment

Source of Variance	Drought hardiness
Variety	10%
Provenance	4%
Block	6%
Residual	80%
Vpop (populations)	4%
Vpop (Varieties)	11%

Distribution of drought-hardiness variation (varieties separated)

Fdc

Source of Variance	Drought hardiness
Provenance	1%
Block	2%
Residual	97%
Vpop	1%

Fdi

Source of Variance	Drought hardiness
Provenance	6%
Block	10%
Residual	83%
Vpop	7%

Case-control GWAS (phenotype x allele frequencies)

Healthy Trees for Future Climates

Case-control GWAS (phenotype x allele frequencies)

Healthy Trees for Future Climates

Take-away and next steps

- Differences between the two varieties were observed for cold and drought hardiness.
- Local adaptation to drought in the seedling stage is weak within var. *glauca*, but it is almost absent for var. *menziesii*.
- Local adaptation to frost in the fall is strong within both varieties, but stronger in the interior (variation among populations)
- Substantial variation within populations in both varieties suggests great genetic variation, micro-environmental factors and plasticity might also play a role in Douglas-fir drought tolerance dynamics.

Take-away and next steps

- Analysis of the other measured traits and comparisons between natural and selectivebred populations underway.
- GWAS to detect candidate genes associated with the observed patterns in drought tolerance and cold hardiness. (50 ~ Mbp)
- Results from this study, which is part of CoAdapTree, will be used to inform CBST for reforestation.

Acknowledgements

Sally Aitken Christine Chourmouzis Pia Smets Alex Girard Joanne Tuytel

Jon Degner

Beth Roskilly

Dragana Vidakovic Brandon Lind Sam Yeaman Spencer Reitenbach Iain Reid Colin Mahony Yue Yu Tom Booker Rossana Borelli Vincent Hanlon Greg O'Neill Trevor Doerksen Justin Chow Thomson Harris Leah Rettenbacher Barry Jaquish Michael Stoehr Tongli Wang

https://coadaptree.forestry.ubc.ca/

