

Interior breeding update: spruce, Douglas-fir, western larch.

Trevor Doerksen & Barry Jaquish

Lw progeny testing – cycle 1.

- 1st cycle tests planted in original SPZ:
 - EK (pink)
 - NE (brown).
- Lw range projected to expand (Rehfeldt & Jaquish) NW:
 - □ LW1 (EK)
 - LW2 (NE)
- cycle 2 crossing complete (2016).

Lw progeny testing – cycle 2.

cycle 1 (black) & cycle 2 (red) test sites

- 7 NE progeny tests planted (2017).
 - not ideal -> hot, dry, fires!
 - survival mapping surveys (2018).
- EK progeny tests
 - sown & lifted (2017)
 - 4 sites identified for planting (2018).

Lw

NE cycle 2 progeny crop (Landing Nursery, 2017)

Lw test sites (2017).

Cranbrook (east Kiakho)

Lw test sites (2017).

Cranbrook (east Kiakho)

Kispiox

Lw test sites (2017).

Alex Fraser Research Forest

Lw test sites (2018).

Kimberly (Meachen)

Huge thanks to all collaborators!!

Sx – weevil resistance screening.

Sx – artificial infestation.

□ Challenge:

- uniform infestation
 - artificially raise
 - release weevils on young progeny tests (e.g. raised-bed)
- broad inference
 - across environments
 - relative to other genotypes

Sx – artificial infestation.

□ Challenge:

- uniform infestation
 - artificially raise
 - release weevils on young progeny tests (e.g. raised-bed)
- broad inference
 - across environments
 - relative to other genotypes

Sx – weevil resistance screening

Challenge:

- uniform infestation
 - artificially raise & release weevils on young progeny tests (e.g. raised-bed)
- broad inference
 - across environments
 - relative to other genotypes
- combine experiments!
 - 2 Kal + 2 Skimikin

Sx – KAL GBU

- □ 13 parents classed as:
 - resistant (R)
 - susceptible (S)
- 42 full-sib families:
 - RxR (G)
 - RxS (B)
 - SxS (U!)
- cumulative weevil attacks (binary) over time
 - 0 = attacked (susceptible)
 - 1 = healthy (resistant)

see: Alfaro.2004.FEM.202:369

Sx – KAL GBU

Sx – KAL raised bed

58 parents
 OP seed (VSOC orchard 211)
 half-sib families

Sx – KAL raised bed

Sx – Skimikin:

PGS2 progeny test & 'raised bed'.

Sx – Skimikin:

PGS2 progeny test & 'raised bed'.

(note: axes reversed)

Sx – weevil resistance screening summary data

site	type	parents	trees	0	1
KAL-RB	HS	58	1351	0.44	0.56
SKIM-RB	HS	50	1383	0.35	0.65
GBU	FS	13	2973	0.52	0.48
SKIM-PT	FS	142	5568	0.28	0.72

 only 4 common parents in GBU -> lump together KAL-RB

Sx – weevil resistance screening summary data

site	type	parents	trees	0	1
KAL-GBU	HS+FS	67	4324	0.49	0.51
SKIM-RB	HS	50	1383	0.35	0.65
GBU					
	50	4 4 2		0.20	0 70
SKIIVI-PT	FS	142	5568	0.28	0.72

- min 44 common parents among tests
- reduced animal model (RAM), inference only on parent trees with offspring
- multivariate -> estimate genetic correlations among traits in different tests (?)

Sx – weevil resistance screening

genetic correlations & h2

sito		CVINA		h2
Sile	KAL	JULIN	SKIIVI-PI	112
	4	0.00	0.54	0.44
KAL-GBU	1	0.68	0.51	0.41
SKIM-RB		1	0.72	0.27
SKIM-PT			1	0.50

rg se ~ 0.15

- stain stone cells (JW) of evaluated parent clones
 - targeting one or multiple resistance mechanisms?
- improve weevil rearing on artificial media (JW)
- release weevils on ramets of fwd selections at KAL
- 2018 screen progeny of parents in southern Sx seed orchards

- stain stone cells (JW) of evaluated parent clones
 - targeting one or multiple resistance mechanisms?
- improve weevil rearing on artificial media (JW)
- release weevils on ramets of fwd selections at KAL
- 2018 screen progeny of parents in southern Sx seed orchards

- stain stone cells (JW) of evaluated parent clones
 - targeting one or multiple resistance mechanisms?
- improve weevil rearing on artificial media (JW)
- release weevils on ramets of fwd selections at KAL
- 2018 screen progeny of parents in southern Sx seed orchards

- stain stone cells (JW) of evaluated parent clones
 - targeting one or multiple resistance mechanisms?
- improve weevil rearing on artificial media (JW)
- release weevils on ramets of fwd selections at KAL
- 2018 screen progeny of parents in southern Sx seed orchards (NE L,M,H)
 - drop off infested leaders!

Sx - weevil resistance (2018).

 two linked Nelson progeny tests :

 progeny tests :
 low (Duncan) 610m
 high (Erie) 1250m

 1st cycle
 OP/HS progeny
 ~30-years old

- flagged 30% of trees per site (~3450 total).
- □ 453 families (total):
 - 252/Duncan
 - **228/Erie**
 - 27 in common
- $\square \sim 8$ trees/fam/site.

- acoustic velocity (AV)
 ~fibre angle
 - predictor of wood strength (MOE, MOR)
- □ AV measured, 3 tools:
 - on bole (1m) of standing tree
 - IML (all 3450)
 - ST300 (subset ~60)
 - butt of felled trees.
 - HM200 (subset ~60)

- compare AV measures
- compare AV: cycle1, cycle2, check lots.
- estimate genetic corr:
 - growth & AV
 - AV: site1 vs site2.
- compare estimates to wood density from linked farm-field test.

- compare AV measures
- compare AV: cycle1, cycle2, check lots.
- estimate genetic corr:
 - growth & AV
 - AV: site1 vs site2.
- compare estimates to wood density from linked farm-field test.

- growth vs AV (tri-var)
 - □ rg =~0 (Erie):
 - HT:AV +ve (rg=0.12)
 - DBH:AV -ve (rg=-0.05)
 - growth VC over-est.
- AV: site 1 vs 2 (bi-var)
 - □ rg~1 (i.e. no GxE)
 - □ $h^2 = ~0.30$
 - agrees with literature.
 good news! Can pool info across sites.

- compare AV measures
- compare AV: cycle1, cycle2, check lots.
- estimate genetic corr:
 - growth & AV
 - AV: site1 vs site2.
- compare estimates to wood density from linked farm-field test.

- compare AV measures
- compare AV: cycle1, cycle2, check lots.
- estimate genetic corr:
 - growth & AV
 - AV: site1 vs site2.
- compare estimates to wood density from linked farm-field test.

Fdi – root rot screening (Armillaria...Phellinus...).

families of southern seed orchard parent clones

challenge determining
 if Phellinus present in:
 inoculation stick

- challenge determining
 - if Phellinus present in:
 - inoculation stick
 - stem or root

- challenge determining
 - if Phellinus present in:
 - inoculation stick
 - stem or root

For. Path. 35 (2005) 305–314 © 2005 Blackwell Verlag, Berlin

Differentiating the two closely related species, Phellinus weirii and P. sulphurascens

By Y. W. LIM¹, Y. C. A. YEUNG¹, R. STURROCK², I. LEAL² and C. BREUIL¹

¹Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada. E-mail: colette.breuil@ubc.ca; ²Canadian Forest Service, Pacific Forestry Centre, Victoria, BC, Canada challenge determining if
 Phellinus present in:

- inoculation stick
- stem or root
- on going 2018:
 - water-stress trees, to induce mortality.
 - use sp.-specific marker(s) to identify Phellinus presence.
 - start culturing Armillaria.

staff autumn 2017

Lw NE cycle 2 seedling lift