
CLIMATE CHANGE INFORMED SPECIES SELECTION (CCISS)

ADJUSTING TREE SPECIES SUITABILITY BY SITE SERIES

Will MacKenzie and Pamela Dykstra ITAC Meeting January 31, 2018

OBJECTIVE

We want our managed stands to adapt or selforganize after unexpected disturbances or changes and to continue to provide desired goods and services. (D. Coates NSC presentation 2011)

We want our forest landscapes to have sufficient diversity to limit the impacts of a single speciesspecific disturbances and <u>improve adaptability to a</u> <u>changing environment</u>

REFORESTATION DECISIONS

• STEP 1: Species selection (CF Reference Guide)

- Species suitable for the <u>climate</u> + site conditions
- Species meeting Management Objectives
- STEP 2: Seedlot selection (CBST)
 - Seedlots adapted to <u>climate</u>
- Both need a climate change focus

SPECIES SELECTION MUST ALSO CONSIDER SITE CONDITION WITHIN CLIMATE

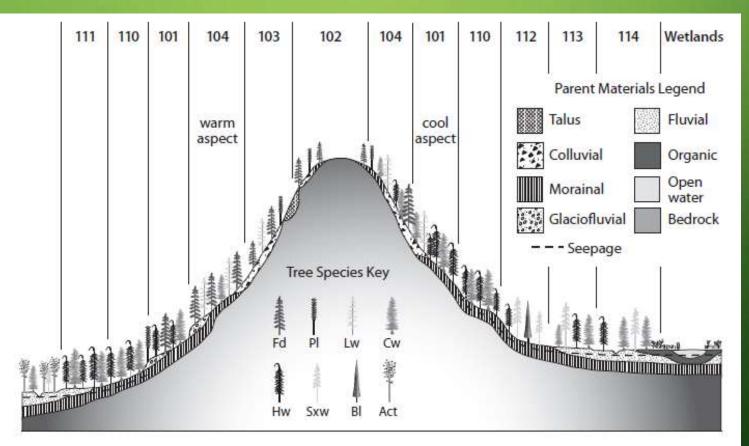


FIGURE 4.4 Typical pattern of site series distribution within a biogeoclimatic subzone/variant across mountainous terrain of southeast British Columbia.

CHIEF FORESTERS REFERENCE GUIDE

BGC		Regeneration Guide										
Classification			Stocking(i)			Regen						
		Conifer					Broadleaf	Target	MIN pa	MIN p	Delay	
			Primary	Preferred (p)	Secondary	Acceptable	Tertiary		(well-space	ed/ha)		(Maxyrs)
Zone/SZ	Series	Standards ID				(a)						
ICHmw2	101	1050312	Fd ⁵⁸ Lw	Fd ⁵⁸ Lw Cw	Cw Hw	BI ^{10,13,202}	BI ^{10,13}	Act ^b At ^a Ep ^a	1200	700	600	4
				Hw ²⁰¹ Pw ³¹	Sx ^{10,13} Pw ³¹	Sx ^{10,13}		•				
	102	1050313	Fd ⁵⁸ PI	Fd ⁵⁸ Pl	Lw	Lw Py ^{9,14,203}	Py ^{9,14,203}	At ^b	1000	500	400	7
	103	1050314	Fd ⁵⁸ Lw	Fd ⁵⁸ Lw		Pl ²⁰⁰ Pw ³¹	Pl Pw ³¹ Cw ¹³	At ^a Ep ^b	1000	500	400	7
						Cw ¹³	Py ^{9,14,203}					
						Py ^{9,14,203}	·					
	104	1050315	Fd ⁵⁸ Lw	Cw ^{10,201} Fd ⁵⁸	Cw Hw Pw ³¹	Pl Hw	PI Sx ^{10,13}	At ^a Ep ^a	1200	700	600	7
				Lw Pw ³¹		Py ^{9,14,203}	BI ^{10,13}					
				200100		Sx ^{10,13}	Pv ^{9,14,203}					
	110	1050316	Cw	Cw Hw ²⁰¹	Fd ^{1,14,32,58}	Sx ^{10,13}	BI ^{10,13}	Act ^a At ^a Ep ^a	1200	700	600	4
				Ed ^{1,14,32,58}	Hw Lw ^{1,14}	<u>o</u> n	5.	/ ioc / ic _p				
				Lw ^{1,14,32}	Pw ³¹ Sx							
	111	1050317	Cw ³² Sx	Cw ³² Pw ^{1,31}	$Hw^{32} Pw^{31}$	Fd ^{1,14,32,58}	Fd ^{1,32} Lw ^{1,32}	Act ^a At ^a Ep ^a	1200	700	600	4
				Sx		Hw ³²	BI					
						Lw ^{1,14,32}						
	112	1050318	Sx	Sx Cw ^{1,32}	BI ²⁰² Cw ^{1,32}	Lw Hw ^{1,32} Bl ²⁰²	Hw ^{1,32}	Act ^a	1200	700	600	4
			<u>o</u> x	JX CW			LIAA	ALL	1200	, 30	000	
												1

Species Ranked in Each Site Series

Feasibility – ecological suitability

Reliability –forest health/environ hazards

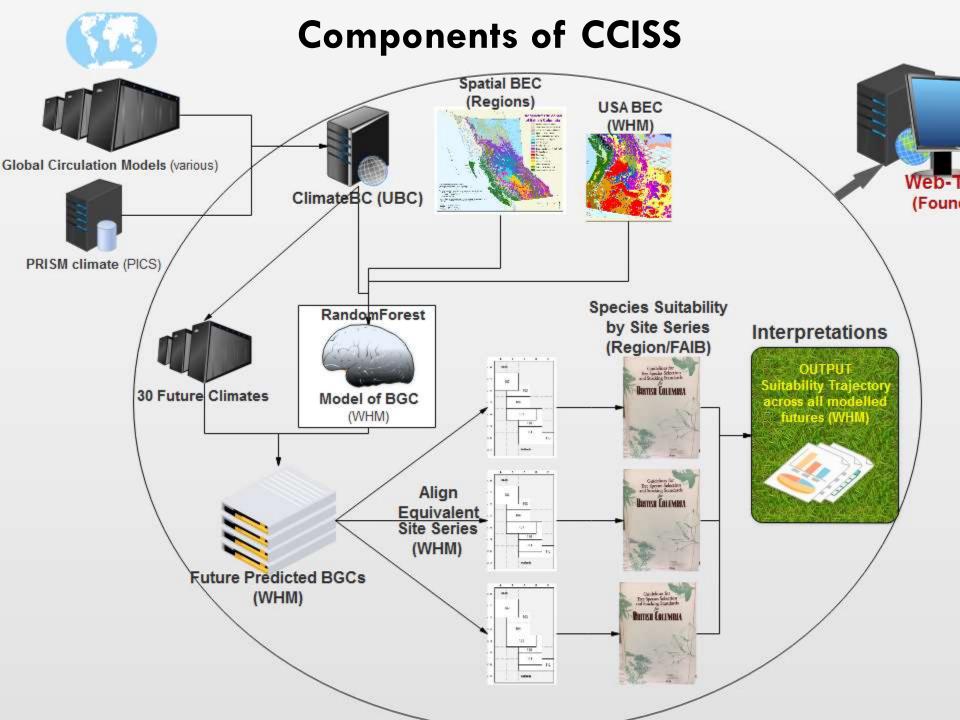
Productivity – growth potential (saw log focus)

Primary — ecologically acceptable with a high rating for F, R, and P - managed as a major component of the stand
Secondary — ecologically acceptable but rank lower for one or more of F, R and P – managed as either a major or minor component of the stand


Tertiary – ecologically acceptable – usually only suitable as a <u>minor component</u> of the stand Not suitable

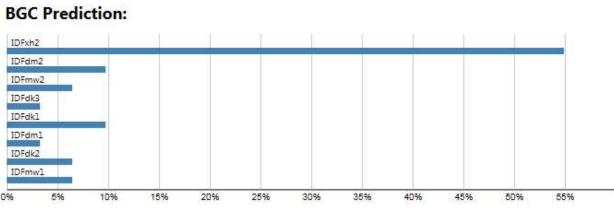
° CCISS IS BEC-BASED

- Biogeoclimatic Ecosystem Classification
 - Bioclimates that can be modeled with climate change
 - Link climate- to site-level change
- If a future projected climate is like a current BEC climate we already know what to expect & do


Allows leveraging of existing BEC interpretations:

- Tree species selection
- Habitat, biodiversity, forage values
- Changes to site productivity/carbon sequestration
- Other

CCISS APPROACH


- Predict future BEC from each of 30 model/scenarios using machine-learning analysis (randomForest)
- Align species suitability ranks for each of the predicted future site series.
- Based on the degree of model agreement:
 - Promote/Demote/remove current species based on projected suitability trajectories
 - Identify range expansion opportunities
 - Identify the range/diversity of species suitable to address the range of future climate uncertainty

CCISS WEB TOOL (REVIEW PHASE)

Predictions for a single point

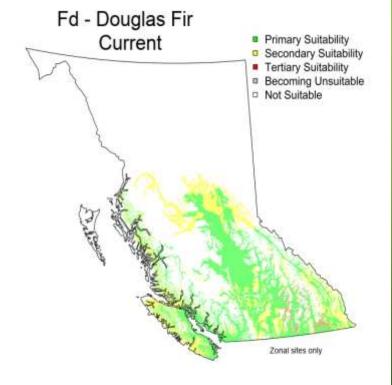
Future Model (2025)

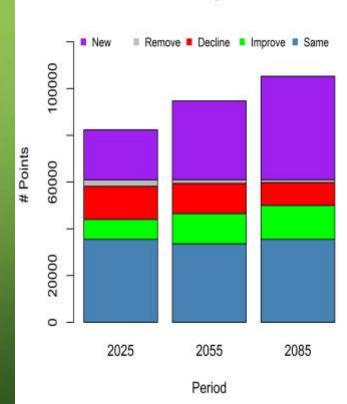
Tree Species Suitability

Site Series: IDFdk3/01

Species	Current Suit.		Future Suit.	Same	Improve Minor Major	Decline Minor Major	New	Primary	Secondary	Tertiary	Not Suit.
Trembling Aspen	2	2 X 0	0	35.0%		48.0% 48.0%				1	17.0%
Douglas-Fir	1	-	1	97.0%							3.0%
Lodgepole Pine	1	×	0	27.0%		15.0% 15.0%					58.0%
Ponderosa Pine	0	+++	1				89.0%	60.0%	19.0%	10.0%	12.0%
Hybrid Spruce	3	×	0	21.0%	15.0% 9.0% 6.0%						64.0%

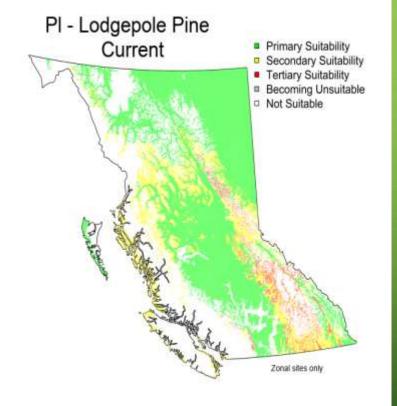
Notes/Footnotes:

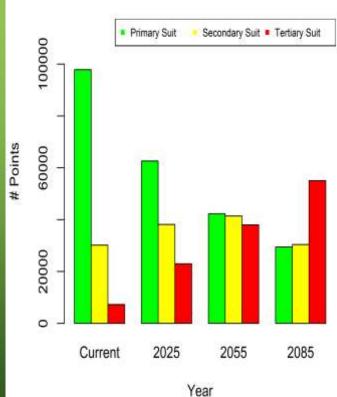

Interpretive notes about the above tables i.e. 31 General circulation models were



PROVINCIAL TRENDS IN SPECIES SUITABILITY

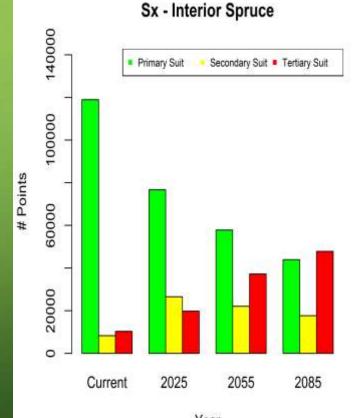
- Temperate species: improving suitability and expanding range (Fd, Py, Lw, Bg, Pw)
- Boreal species: declining suitability and declining range (PI, Sx, BI, Sb)
- Rainforest species: expanding range (Cw, Hw)


CHANGE IN DOUGLAS-FIR SUITABILITY (ONLY ZONAL SITES)



Fd - Douglas Fir

CHANGE IN LODGEPOLE PINE SUITABILITY (ZONAL SITES)



PI - Lodgepole Pine

CHANGE IN INTERIOR SPRUCE SUITABILITY (ZONAL SITES)

Sx - Interior Spruce Current Primary Suitability Secondary Suitability Tertiary Suitability Becoming Unsuitable Not Suitable Zonal sites only

Year

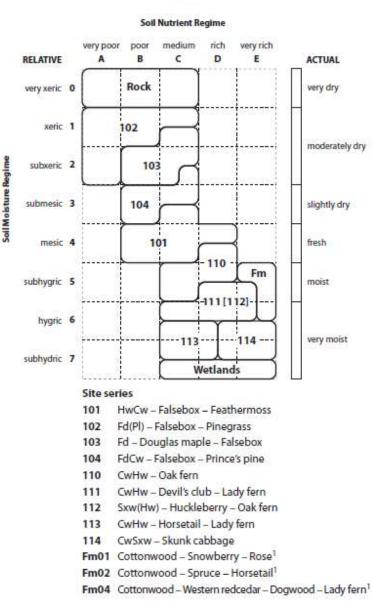
CCISS

• Assist in Climate Change Informed Stocking Standards

• Identify areas of opportunity and risk

ONGOING WORK

- Review of model components
- USA_BEC mapping and species suitability
- Assessment of historic "offsite" species trials


GOALS OF CCISS

- Leverage what we already know (BEC)
- Produce an Adaptive Management analysis framework
 - easily updatable to convert improved information into guidance adjustments
- Web-based delivery of guidance derived from realtime analysis
 - Promote/Demote current species based on projected suitability trajectories
 - Identify range expansion opportunities
 - Identify the range/diversity of species suitable to address climate future uncertainty

SITE VARIATION REFLECTED IN VEGETATION INCLUDING TREE SPECIES

Site relationships modelled in the edatopic grid

 \bigcirc

Edatopic Grid

¹ See section 6.3 for descriptions

ICHmw2

BEC-BASED TREE SPECIES SUITABILITY AT CLIMATE AND SITE SCALES

- Climate has an overarching effect on vegetation
- Site condition within a climatic area also profoundly effects vegetation.
- BEC is the tool for linking these two levels of control together.
- BEC is critical for successful tree species suitability guidance.

TREE SPECIES SUITABILITY ASSESSMENT

- By Ecologists and Silviculturalists
- Assess the following 3 key elements for each species in each site series:
 - Feasibility ecological suitability
 - Reliability –forest health constraints
 - Productivity growth potential (saw log focus)

REFORESTATION SPECIES DECISIONS

Ecological factors

Management Factors

Climate Change Factors Species Suitability Ranking by BEC